A microfluidic-based hydrodynamic trap: design and implementation.
نویسندگان
چکیده
We report an integrated microfluidic device for fine-scale manipulation and confinement of micro- and nanoscale particles in free-solution. Using this device, single particles are trapped in a stagnation point flow at the junction of two intersecting microchannels. The hydrodynamic trap is based on active flow control at a fluid stagnation point using an integrated on-chip valve in a monolithic PDMS-based microfluidic device. In this work, we characterize device design parameters enabling precise control of stagnation point position for efficient trap performance. The microfluidic-based hydrodynamic trap facilitates particle trapping using the sole action of fluid flow and provides a viable alternative to existing confinement and manipulation techniques based on electric, optical, magnetic or acoustic force fields. Overall, the hydrodynamic trap enables non-contact confinement of fluorescent and non-fluorescent particles for extended times and provides a new platform for fundamental studies in biology, biotechnology and materials science.
منابع مشابه
Finite element simulations of hydrodynamic trapping in microfluidic particle-trap array systems.
Computational fluid dynamic (CFD) simulation is a powerful tool in the design and implementation of microfluidic systems, especially for systems that involve hydrodynamic behavior of objects such as functionalized microspheres, biological cells, or biopolymers in complex structures. In this work, we investigate hydrodynamic trapping of microspheres in a novel microfluidic particle-trap array de...
متن کاملA microfluidic-based hydrodynamic trap for single particles.
The ability to confine and manipulate single particles in free solution is a key enabling technology for fundamental and applied science. Methods for particle trapping based on optical, magnetic, electrokinetic, and acoustic techniques have led to major advancements in physics and biology ranging from the molecular to cellular level. In this article, we introduce a new microfluidic-based techni...
متن کاملBuilding a better cell trap: Applying Lagrangian modeling to the design of microfluidic devices for cell biology
In this report, we show how computational fluid dynamics can be applied to the design of efficient hydrodynamic cell traps in microfluidic devices. Modeled hydrodynamic trap designs included a large, multiple-aperture “C-type” sieve for trapping hundreds of cells, flat single-aperture arrays for single cells, and “U-type” hydrodynamic structures with one or two apertures to confine small cluste...
متن کاملHydrodynamic trap for single particles and cells.
Trapping and manipulation of microscale and nanoscale particles is demonstrated using the sole action of hydrodynamic forces. We developed an automated particle trap based on a stagnation point flow generated in a microfluidic device. The hydrodynamic trap enables confinement and manipulation of single particles in low viscosity (1-10 cP) aqueous solution. Using this method, we trapped microsca...
متن کاملPillar array microtraps with negative dielectrophoresis.
We present a microfluidic particle-trap array that utilizes negative dielectrophoresis (nDEP) force and hydrodynamic force. The traps are located at the stagnation points of cylindrical pillars arranged in a regular array, and they can function as both single-particle traps (capable of discriminating particles based on size) and multiparticle traps (capable of controlling the number of particle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 11 10 شماره
صفحات -
تاریخ انتشار 2011